GEORGIA INSTITUTE OF TECHNOLOGY

School of Civil and Environmental Engineering CEE 6590 Durability of Cement-Based Materials Course Syllabus - Spring 2019

Instructor: Dr. Kimberly E. Kurtis

Office: Mason 4154

Lecture: T,R 12-1:15

Classroom: DM Smith 104

Office Hours: R 1:30-3, open door and by appt. **Web:** Canvas

E-mail: kkurtis@gatech.edu Phone: 404-385-0825

Course Objectives

- To develop a fundamental understanding of the chemical, physical, and mechanical aspects surrounding the durability of cement-based materials.
- To identify effective material selection, mixture design, and structural design characteristics that promote durability.
- To understand and apply existing models describing the structure and durability of cement-based materials.
- To develop an appreciation for the seminal research which forms the foundation for current understanding and for the emerging technologies which will allow advances in the state-of-the-art in the development of more durable cement-based materials.
- To integrate research and learning.
- To improve critical thinking and written and oral technical communication skills.

Honor Code:

This course will be conducted under the guidelines of the Georgia Tech Academic Honor Code. A copy of the code can be found at http://honor.gatech.edu/content/2/the-honor-code

Course Requirements:

Grading will reflect performance on 2 exams and several assignments, including:

HW1: Cement-based Materials Review	5%	January 17
HW2: Inspection Reports	5%	January 29
HW3: Journal Review/Club Discussion	5%	February 12
HW4: Virtual Experiment	5%	February 23
Midterm Quiz	20%	February 26
HW5: Critical Review – Detailed Outline/Source	ces 5%	March 7
Critical Review	20%	April 2 (submitted), by April 23 (revised)
Critical Review Presentation	5%	April 11, 16 and 18
HWs 5/6: Peer Reviews	5%	April 9
Final Quiz	20%	May 2, 11:20-2:10
Class participation	5%	
Approximate grading scale:		
90-100%=A 80-89%=B 70-79%=C	60-69%=D	Less than 60%=F

Course materials:

- See course site at Canvas for course notes and announcements
- Required Text: (choose one)
 - 1. Mehta, P.K. and Monteiro, P.J.M., CONCRETE: Microstructure, Properties, and Materials, any edition.
 - 2. Mindess, S. Young, J.F. and Darwin, D. Concrete, Prentice-Hall, 2nd Edition, 2003.
- ACI student membership, with tokens.
- Additional required reading will be assigned, including ACI 201.2R Guide to Durable Concrete.
- Additional materials on Georgia Tech's library electronic reserve:
 - 1. PC Hewlett (Ed.) Lea's Chemistry of Cement and Concrete, Arnold, 2004. (new edition promised 3/18)
 - 2. VS Ramachandran and JJ Beaudoin (Eds), <u>Handbook of Analytical Techniques in Concrete Science and Technology</u>, William Andrews Pub/Noyes, 2001.
 - 3. K Scrivener, R Snellings, B Lothenbach (Eds), <u>A Practical Guide to Microstructural Analysis of Cementitious Materials</u>. CRC Press, 2016.

Tentative Course Outline

TOPICS COVERED	DATE
Introduction	1/8
Condition assessment	1/10
OPC and ACM Binders and SCMs: Hydration and Multiscale Structure	1/15, <u>1/17,</u> 1/22
Specification of Cements and other Binders	1/24
Analysis and characterization methods for concrete deterioration	<u>1/29</u>
Aggregate durability: ASR & ACR	1/31, 2/5
Abrasion, erosion, cavitation - Fire, Biodeterioration	2/5, 2/7
Journal Club	2/12, 2/14
Transport	2/19, 2/21
MIDTERM QUIZ	2/26
Performance-based Specifications & Service life modeling	2/28
Damage due to Crystallization Pressure	<u>3/5</u>
Freeze/thaw and salt scaling (including deicers - ACI)	3/7
Sulfate attack	3/12
Delayed ettringite formation, Thaumasite formation	3/14
SPRING BREAK	3/18-3/22
Carbonation	<u>3/26</u>
Corrosion of steel in concrete	<u>3/28</u>
Multi-mechanism Degradation: Case Study	4/2
Alternative Binders and their Durability	4/4, 4/9
Critical Review Presentations	4/11, 16, and 4/18
Course wrap-up	4/23
FINAL QUIZ	5/2, 11:20-2:10